Maximum Norm a Posteriori Error Estimation For a Time-dependent Reaction-diffusion Problem
نویسندگان
چکیده
Abstract — A semilinear second-order singularly perturbed parabolic equation in one space dimension is considered. For this equation, we give computable a posteriori error estimates in the maximum norm for a difference scheme that uses Backward-Euler in time and central differencing in space. Sharp L1-norm bounds for the Green’s function of the parabolic operator and its derivatives are derived that form the basis of the a posteriori error analysis. Numerical results are presented. 2010 Mathematical subject classification: 65M15; 65M50.
منابع مشابه
Maximum Norm A Posteriori Error Estimate for a 2D Singularly Perturbed Semilinear Reaction-Diffusion Problem
A singularly perturbed semilinear reaction-diffusion equation, posed in the unit square, is discretized on arbitrary nonuniform tensor-product meshes. We establish a second-order maximum norm a posteriori error estimate that holds true uniformly in the small diffusion parameter. No mesh aspect ratio assumption is made. Numerical results are presented that support our theoretical estimate.
متن کاملFINITE ELEMENT CENTER PREPRINT 2000–12 APosteriori Error Analysis in themaximumnorm for a penalty finite element method for the time- dependent obstacle problem
A Posteriori Error Analysis in the maximum norm for a penalty finite element method for the time-dependent obstacle problem Abstract. We consider nite element approximation of the parabolic obstacle problem. The analysis is based on a penalty formulation of the problem where the penalisation parameter is allowed to vary in space and time. We estimate the penalisation error in terms of the penal...
متن کاملA posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملA posteriori error estimation of residual type for anisotropic diffusion-convection-reaction problems
This paper presents an a posteriori residual error estimator for diffusion– convection–reaction problems with anisotropic diffusion, approximated by a SUPG finite element method on isotropic or anisotropic meshes in Rd, d = 2 or 3. The equivalence between the energy norm of the error and the residual error estimator is proved. Numerical tests confirm the theoretical results.
متن کاملA posteriori error estimation for a new stabilized discontinuous Galerkin method
A posterior% error estimates are derived for a stabilized discontinuous Galerkin method (DGM) [l]. Equivalence between the error norm and the norm of the residual functional is proved, and consequently, global error estimates are obtained by estimating the norm of the residual. One-and two-dimensional numerical experiments are shown for a reaction-diffusion type model problem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comput. Meth. in Appl. Math.
دوره 12 شماره
صفحات -
تاریخ انتشار 2012